andretti autosport.

Machine learning and quantum techniques for race day success, powered by Orquestra®

Andretti Autosport is upgrading their analytics infrastructure to enhance decision making—and win more races.

Season 1 Recap

Take a behind-the-scenes look at what’s happened in our first season with Andretti Autosport, from the cross-team collaboration, to preparing Andretti’s analytics infrastructure for quantum and even what happens in the Race Analytics Command Center (RACC).

Our work together

Advanced Machine Learning today, Quantum tomorrow

The use cases we’re testing and piloting are classical machine learning solutions, using today’s data, compute, and architecture. The team is also testing quantum-inspired methods running on classical compute. But by running on Orquestra, these applications are forward-compatible with quatum and other exotic hardware — so that when it is ready, Andretti will be in pole position to capture a competitive advantage.

Exploring Use Cases in Machine Learning and Optimization


Tire Degradation Analysis

Tires wear out quickly going over 200MPH, requiring time-consuming pit stops to change tires. Zapata is working with Andretti to create a machine learning model that can guide strategic decisions around tire changes, such as when a car should swap out tires, which tires should be used, and how often they should change tires based on current conditions. This use case translates to predictive maintenance problems across industries.

Fuel Savings Optimization

The fewer times a car has to refuel, the more time it can save in the race. Zapata and Andretti are applying machine learning and advanced analytics to help drivers optimize their fuel consumption and determine the best timing for refueling. Similar fuel savings solutions have wide applicability in any industry looking to shrink its carbon footprint or time to delivery.

Predictive Modeling: Yellow Flag

When there’s an accident or debris on the track, drivers are required to reduce their speed and are prohibited from passing other cars. This is a yellow flag, and since cars aren’t going full speed, it’s often a good time for a pit stop. Zapata and Andretti are creating a model to predict when a yellow flag is likely based on track conditions, the status of various cars, the drivers in those cars, and other factors. This ability to predict and preemptively respond to disruptive events has wide applicability beyond racing.

“INDYCAR racing is all about finding every possible edge and then maximizing it. Zapata’s expertise gives us that advantage through their Orquestra quantum software platform and expert scientists and engineers.”

Michael Andretti
CEO and Chairman, Andretti Autosport

Meet the industry-leading companies working with Zapata.